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Abstract

The purpose of this paper is to analyze triply coupled vibrations of thin-walled beams with arbitrary
open cross-section. Starting from the Vlasov’s theory, the governing differential equations for coupled
bending and torsional vibrations were performed using the principle of virtual displacements. In the case
of a simply supported thin-walled beam, a closed-form solution for the natural frequencies of free
harmonic vibrations was derived. The significance of neglecting cross-sectional warping and rotary inertia
on the accuracy of results was analyzed. A recent paper on the same subject is discussed, with a critical
review of it.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled beams of open cross-section are widely used as structural components within the
fields of mechanical, civil, aeronautical engineering, etc., offering a high performance in terms of
minimum weight for a given strength. The vibration characteristics of those elements are of
fundamental importance in the design of thin-walled structures.

In the general case of arbitrary cross-section of thin-walled beams, lateral vibrations in two
perpendicular directions are coupled with torsional vibrations, and the frequency equations of
such elements should be considered simultaneously. The resulting coupling is referred to as triple
coupling.

Many authors have investigated the free vibration characteristics of thin-walled beams [1–5],
but only a few studies deal with triply coupled vibration. Friberg [6] proposed a numerical
method to evaluate exactly a frequency-dependent stiffness matrix. Natural frequencies were
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found using the algorithm of Wittrick and Williams. The effect of warping was not taken into
account. Yaman [7] investigated the triply coupled vibrations of channels by a wave propagation
approach. Various frequency response curves of coupled vibrations were presented for a variety of
different end boundary conditions. In the analysis of coupled vibrations, the proposed method
can serve as a convenient alternative to techniques such as Vlasov’s theory and the finite element
method. Tanaka and Bercin [8] have solved the governing differential equations for coupled
bending and torsional vibrations in an exact sense. The natural frequency values were derived
using the computer software Mathematica. But, the mentioned authors [8] have not included the
product of inertia term EIxy in non-principal co-ordinate system. This gap has been corrected in
the paper by Arpaci and Bazdag [9].

Recently, Arpaci et al. [10] presented exact analytical method for predicting the undamped
natural frequencies of a thin walled beam having no axis of symmetry. The influence of rotary
inertia (the fourth mixed derivative term in the equation of torsional vibration has not been
considered) and warping was included in triply coupled vibration analysis. One of the author’s
conclusion is that the rotary inertia effect may considerably alter the natural frequencies, the
relative error associated with the neglecting of it, for some conditions, especially for free ends
boundary conditions, reaching 170%.

The purpose of the present paper is to point out that the conclusion above is incorrect. At the
simplest example of a beam with simply supported ends, it is shown that the rotary inertia effect,
except in the cases of high frequencies of vibration, may be neglected.

2. Equations of motion

A straight thin-walled beam of an arbitrary open cross-section, whose length is L; is considered.
As it is well known from Vlasov’s theory the displacements u�; v� and w� of an arbitrary point S�
of cross-section can be described by only four components, three translations uP; vP and w of
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arbitrarily taken pole P and the cross-section rotation j about the same pole, Fig. 1:

u� ¼ uP � jðy � yPÞ;

v� ¼ vP þ jðx � xPÞ;

w� ¼ w � u0Px � v0Py � j0oP; ð1Þ

where oP is the warping function with respect to pole P:
Component deformations different from zero are given by

ez ¼ w0 � u00
Px � v00Py � j00oP;

gs ¼ 2j0e; ð2Þ

where e is the distance of the observed point from the middle surface measured along the
normal n:

Reducing the normal stresses on the center of gravity and shear stresses on the pole P; for
stress resultants the following expressions are obtained:

N ¼
Z Z

F

sz dF;

Mx ¼
Z Z

F

szy dF;

My ¼ �
Z Z

F

szx dF;

Vx ¼ �
Z Z

F

tzs sin a dF;

Vy ¼
Z Z

F

tzs cos a dF;

TP ¼
Z Z

F

tzshp dF;

Ts ¼ 2

Z Z
F

ts e dF;

MoP
¼

Z Z
F

szoP dF: ð3Þ

In Eqs. (3), N represents the axial force, Mx and My the bending moments with respect to the x
and y-axis, Vx and Vy the shear forces in the x and y directions TP the torsion moment, Ts the
Saint Venant torque, MoP

the bimoment and F the area of the cross-section.
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The equations of motion of thin-walled beam can be obtained using the principle of virtual
displacements [11]. All vector and matrix quantities are defined with respect to the right-handed
rectangular co-ordinate system (x; y; z). The z-axis is parallel with the longitudinal centroidal axis
of the beam, while x and y are arbitrarily taken.

A small element between cross-sections z1 ¼ z and z2 ¼ z þ dz (Fig. 2) subjected to external
loads %pð %px; %py; %pzÞ per unit area of midplane is considered.

At any point on the cross-section z1 acts as a stress vector

r ¼ tzstþ sziz ¼ �tzs sin aix þ tzs cos aiy þ sziz: ð4Þ

The vector of virtual displacements du; which satisfies the necessary continuity conditions and
displacement boundary conditions, may be adopted in the same form as a vector of real
displacements

du ¼ du�ix þ dv�iy þ dw�iz

¼ ½duP � djðy � yPÞ�ix þ ½dvP þ djðx � xPÞ�iy

þ ðdw � du0Px � dv0Py � dj0oPÞ iz: ð5Þ

Virtual displacement parameters, for distinction from real displacements are marked with prefix d;
are arbitrary functions of co-ordinates and do not depend upon external loads.

The virtual work expression is

dW þ dU ¼ 0; ð6Þ

where dW is the virtual work of external load and inertia forces through virtual dis-
placements du: and dU the virtual work of actual stresses r realized through virtual strains
de ¼ ½dez dgT �:
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The virtual work of the external load and inertia forces per unit length of the element is

dW ¼
Z Z

F

ðr;zduþ rdu;zÞ dFþ
Z

s

%pdu ds � r
Z Z

F

.udu dF; ð7Þ

where r is the density (mass per unit volume), and .u is the acceleration vector given by

.u ¼ .u�ix þ .v�iy þ .w�iz

¼ ½ .uP � .jðy � yPÞ�ix þ ½.vP þ .jðx � xPÞ�iy þ ð .w � .u0Px � .v0Py � .j0oPÞiz: ð8Þ

A dot denotes differentiation with respect to time t:
Substituting Eqs. (4), (5) and (8) into Eq. (7), the following expression for dW is obtained:

dW ¼
Z Z

F

f�t0zs sin a½duP � djðy � yPÞ�

þ t0zs cos a½dvP � djðx � xPÞ�

þ s0zðdw � dv0Py � du0
Px � dj0oPÞ

� tzs sin a½du0
P � dj0ðy � yPÞ�

þ tzs cos a½dv0P � dj0ðx � xPÞ�

þ szðdw0 � dv00Py � du00Px � dj00oPÞg dF

þ
Z

s

f %px½duP � djðy � yPÞ�

þ %py½dvP þ djðx � xPÞ�

þ %pzðdw � du0
Px � dv0Py � dj0oPÞg ds

� r
Z Z

F

ðdu� .u� þ dv� .v� þ dw� .w�Þ dF: ð9Þ

The virtual work of the internal load due to the corresponding variation of deformation, per
unit length of the element, is

dU ¼ �
Z Z

F

ðszdez þ tsdgsÞ dF: ð10Þ

Using expressions (2) for virtual strains, where real displacement should be replaced by virtual
displacement, one gets for dU

dU ¼ �
Z Z

F

½szðdw0 � du00
Px � dv00Py � dj00oPÞ þ ts2dj0e� dF: ð11Þ
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By suitable rearrangement of Eqs. (9) and (11) in accordance with virtual displacement
parameters, the principle of virtual work may be expressed as

dw

Z Z
F

s0z dF� r
Z Z

F

.w� dFþ
Z

s

%pz ds

� �

þ duP �
Z Z

F

t0zs sin a dF� r
Z Z

F

.u� dFþ
Z

s

%px ds

� �

þ dvP

Z Z
F

t0zs cos a dF� r
Z Z

F

.v� dFþ
Z

s
%py ds

� �

þ dj
Z Z

F

t0zshP dFþ r
Z Z

F

½ðy � yPÞ .u� � ðx � xPÞ.v�� dF
�

þ
Z

s

½ %pyðx � xPÞ � %pxðy � yPÞ� ds

�

� du0P

Z Z
F

ðs0zx þ tzs sin aÞ dF� r
Z Z

F

x .w� dFþ
Z

s
%pzx ds

� �

� dv0P

Z Z
F

ðs0zy � tzs cos aÞ dF� r
Z Z

F

y .w� dFþ
Z

s

%pzy ds

� �

� dj0
Z Z

F

ðs0zoP � tzshP þ 2tseÞ dF
�

� r
Z Z

F

oP .w� dFþ
Z

s

%pzoP ds

�
¼ 0: ð12Þ

To satisfy these equations identically for any virtual displacement parameter dwo; duP; dvP;y; it is
necessary that the expressions in the great brackets vanish. Now, using the expressions for stress
resultants (3), one obtains

N 0 � r
Z Z

F

.w� dFþ pz ¼ 0;

V 0
x � r

Z Z
F

.u� dFþ px ¼ 0;

V 0
y � r

Z Z
F

.v� dFþ py ¼ 0;

T 0
P þ r

Z Z
F

½ðy � yPÞ .u� � ðx � xpÞ.v�� dFþ mP ¼ 0;

M 0
y þ Vx þ r

Z Z
F

x .w� dFþ my ¼ 0;

M 0
x � Vy � r

Z Z
F

y .w� dFþ mx ¼ 0;

M 0
oP

� TP þ Ts � r
Z Z

F

oP .w� dFþ moP
¼ 0: ð13Þ
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The forces Vx; Vy and TP can be eliminated from Eq. (13) in order to obtain four equations

N 0 � r
Z Z

F

.w� dFþ pz ¼ 0;

M 00
y þ r

Z Z
F

x .w0
� dFþ r

Z Z
F

.u� dF� px þ m0
y ¼ 0;

M 00
x � r

Z Z
F

y .w0
� dF� r

Z Z
F

.v� dFþ py þ m0
x ¼ 0;

M 00
oP

þ T 0
s � r

Z Z
F

oP .w0
� dFþ r

Z Z
F

½ðy � yPÞ .u� � ðx � xpÞ .v�� dFþ mP þ m0
oP

¼ 0: ð14Þ

The stress resultants can be expressed directly in terms of the displacements [12]. The equations
are written in matrix form

N

My

�Mx

�MoP

Ts

2
6666664

3
7777775
¼ E

F �Sx �Sy �SoP
0

�Sx Ixx Ixy IxoP
0

�Sy Ixy Iyy IyoP
0

�SoP
IxoP

IyoP
IoPoP

0

0 0 0 0 GK
E

2
6666664

3
7777775

w0

u00
P

v00P

j00

j0

2
6666664

3
7777775
: ð15Þ

The equations of motion can be obtained by substituting for the stress resultants from Eq. (15)
into Eq. (14)

E

F �Sx �Sy �SoP

�Sx Ixx Ixy IxoP

�Sy Ixy Iyy IyoP

�SoP
IxoP

IyoP
IoPoP

2
6664

3
7775

w000

u0000P

v0000P

j0000

2
6664

3
7775� GK

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

2
6664

3
7775

w0

u00
P

v00P

j00

2
6664

3
7775

� r

F �Sx �Sy �SoP

�Sx Ixx Ixy IxoP

�Sy Ixy Iyy IyoP

�SoP
IxoP

IyoP
IoPoP

2
6664

3
7775

.w0

.u00
P

.v00P

.j00

2
6664

3
7775

þ r

0 0 0 0

0 F 0 yPF� Sy

0 0 F �xPFþ Sx

0 yPF� Sy �xPFþ Sx IP

2
6664

3
7775

.w

.uP

.vP

.j

2
6664

3
7775 ¼

�pz

px � m0
y

py þ m0
x

mP þ m0
o

2
66664

3
77775: ð16Þ

To achieve the compact form the order of Eq. (14)–(1) is artificially raised by one.
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In principal co-ordinates and by selecting the shear centre D as the pole, instead of some
arbitrary point P as before, matrix equation (16) becomes

E

F 0 0 0

0 Ixx 0 0

0 0 Iyy 0

0 0 0 IoDoD

2
6664

3
7775

w000

u0000
D

v0000D

j0000

2
6664

3
7775� GK

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

2
6664

3
7775

w0

u00
D

v00D

j00

2
6664

3
7775

� r

F 0 0 0

0 Ixx 0 0

0 0 Iyy 0

0 0 0 IoDoD

2
6664

3
7775

.w0

.u00
D

.v00D

.j00

2
6664

3
7775

þ rF

0 0 0 0

0 1 0 yD

0 0 1 �xD

0 yD �xD
ID

F

2
66664

3
77775

.w

.uD

.vD

.j

2
6664

3
7775 ¼

�pz

px � m0
y

py þ m0
x

mD þ m0
o

2
66664

3
77775: ð17Þ

The first equation in Eq. (17), describing axial vibration, is uncoupled from the rest of the system
and may be analyzed independently.

The free harmonic transverse and torsional vibrations are defined by the coupled homogeneous
Eqs. ð17Þ2;3;4: The solution may be expressed in the form

uDðz; tÞ

vDðz; tÞ

jðz; tÞ

2
64

3
75 ¼

UðzÞ

V ðzÞ

FðzÞ

2
64

3
75 sin pt; ð18Þ

where p is the radian frequency and U ; V and F are amplitudes of the transverse displacements
and torsional rotation. Substituting Eq. (18) into homogeneous equations (17) yields

E

Ixx

Iyy

IoDoD

2
64

3
75

U 0000

V 0000

F0000

2
64

3
75� GK

0 0 0

0 0 0

0 0 1

2
64

3
75

U 00

V 00

F00

2
64

3
75

þ rp2

Ixx

Iyy

IoDoD

2
64

3
75

U 00

V 00

F00

2
64

3
75

� rFp2

1 0 yD

0 1 �xD

yD �xD
ID

F

2
64

3
75

U

V

F

2
64

3
75 ¼

0

0

0

2
64

3
75: ð19Þ
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In the case of a beam with simply supported ends (fork supports at each end which prevent
rotation and can warp freely) the end conditions are

U

V

F

2
64

3
75 ¼

0

0

0

2
64

3
75;

U 00

V 00

F00

2
64

3
75 ¼

0

0

0

2
64

3
75: ð20Þ

These requirements are satisfied by taking

UðzÞ

V ðzÞ

FðzÞ

2
64

3
75 ¼

CU

CV

CF

2
64

3
75 sin lnz; ð21Þ

where Cu; Cv and CF are constants and ln ¼ np=L; n ¼ 1; 2;y :
Substituting Eq. (21) into Eq. (19) results in

l4
nE

Ixx

Iyy

IoDoD

2
64

3
75þ l2

nGK

0 0 0

0 0 0

0 0 1

2
64

3
75� l2

nrp2

Ixx

Iyy

IoDoD

2
64

3
75

0
B@

� rFp2

1 0 yD

0 1 �xD

yD �xD
ID

F

2
6664

3
7775

1
CCCA

CU

CV

CF

2
64

3
75 ¼

0

0

0

2
64

3
75: ð22Þ

Setting the determinant of the above system equal to zero

l4
nIxx � ðl2

nIxx þ FÞp� 0 �yDFp�

0 l4
nIyy � ðl2

nIyy þ FÞp� xDFp�

�yDFp� xDFp� l4
nIoDoD

þ l2
n

GK

E
� ðl2

nIoDoD
þ IDÞp�

���������

���������
¼ 0; ð23Þ

where

p� ¼
r
E

p2 ð24Þ

yields the following algebraic frequency equation:

ap3
� þ bp2

� þ cp� þ d ¼ 0 ð25Þ
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with the coefficients

a ¼ � ðl2
nIxx þ FÞðl2

nIyy þ FÞðl2
nIoDoD

þ IDÞ þ ðl2
nIxx þ FÞx2

DF
2 þ ðl2

nIyy þ FÞy2
DF

2;

b ¼ðl2
nIxx þ FÞðl2

nIyy þ FÞ l4
nIoDoD

þ l2
n

GK

E

� �

þ l4
n½ðl

2
nIxx þ FÞIyy þ ðl2

nIyy þ FÞIxx�ðl
2
nIoDoD

þ IDÞ

� l4
nF

2ðIyyy2
D þ Ixxx2

DÞ;

c ¼ � l8
nIxxIyyðl

2
nIoDoD

þ IDÞ

� l4
n½ðl

2
nIxx þ FÞIyy þ ðl2

nIyy þ FÞIxx� l4
nIoDoD

þ l2
n

GK

E

� �
;

d ¼ l12
n IxxIyyIoDoD

þ l10
n

GK

E
IxxIyy: ð26Þ

Thin-walled beams are elements that satisfy condition

f

L
o0:1; f ¼ characteristic dimension of cross-section ð27Þ

so that

l2
nIxx5F; i:e:; n2p2

R R
F

x

L

� �2

dF5
R R

F
dF

l2
nIyy5F; i:e:; n2p2

R R
F

y

L

� �2

dF5
R R

F
dF

l2
nIoDoD

5ID; i:e:; n2p2
R R

F

oD

L

� �2

dF5
R R

F
r2

D dF

9>>>>>=
>>>>>;

for low modes of vibration: ð28Þ

From the relationships above, one can see that the fourth mixed derivative terms (effect of rotary
inertia) in Eqs. (22), except in the cases of very high frequencies of vibration, may be neglected.
Therefore, coefficients (26) may be written in simplified form

a ¼ �F2ID þ F3ðx2
D þ y2

DÞ;

b ¼ F2 l4
nIoDoD

þ l2
n

GK

E

� �
þ l4

nðIxx þ IyyÞ FID � l4
nF

2ðIyyy2
D þ Ixxx2

DÞ;

c ¼ �l8
nIxxIyyID � l4

nFðIxx þ IyyÞ l4
nIoDoD

þ l2
n

GK

E

� �
;

d ¼ l12
n IxxIyyIoDoD

þ l10
n

GK

E
IxxIyy: ð29Þ

3. Numerical examples

The first three modes ðn ¼ 1; 2; 3Þ of natural frequencies of a simply supported thin-walled
beam, for three kinds of cross-section, were determined. Three numerical values which
characterize three different types of natural frequencies: predominantly torsional, predominantly
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flexural in x direction and predominantly flexural in y direction correspond to every mode. The
natural frequencies are obtained by including/excluding the effect of rotary inertia and warping.
The relative error is defined as e ¼ jðp � $pÞ=pj100; where p is the exact frequency and $p is the
frequency obtained by excluding the rotary inertia/warping effect.

The geometrical and material properties of the beam are

E ¼ 2:10 � 108 kN=m2;

G ¼ 8:07 � 107 kN=m2;

r ¼
78:50

9:81
¼ 8:002 kN s2=m4;

L ¼ 10:0 m:

The geometrical properties of the cross-sections of the beam, in the examples below, were
calculated using the computer program given in Ref. [13].

3.1. Example 1

A thin-walled beam with unsymmetrical channel section, Fig. 3, is considered as the first
example. The results are listed in Table 1.

3.2. Example 2

The cross-section characteristics and data used in the analysis are given in Fig. 4. The results are
shown in Table 2.

3.3. Example 3

The cross-section characteristics and other details are shown in Fig. 5. The results are given in
Table 3.

It is evident from the results in Tables 1–3 that warping has a profound influence on the natural
frequencies of the simply supported beam. Indeed, the errors are unacceptably large, which has
been confirmed by many authors. But, the rotary inertia has relatively marginal effect on the
natural frequencies, and can be disregarded, except in the rare cases involving very high
frequencies of vibration (modes for n ¼ 3; 4;y). It may be supposed that it is reasonable enough
to extend this conclusion to the beam with other boundary conditions, but this demands further
examination.

4. Conclusions

Using the principal of virtual displacements the system of equations for triply coupled
vibrations of thin-walled beams with open cross-sections is derived. In the example of simply
supported beam it is shown that the fourth mixed derivative term in governing differential
equations of motion may be neglected, except in the cases involving very high frequencies of
vibration, which has been theoretically proved.
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Table 1

Natural frequencies (Hz) of beam studied as Example 1

Mode Exact Rotary inertia Error Warping Error

ignored (%) ignored (%)

n ¼ 1 54.54 54.57 0.06 23.83 56.31

81.83 81.93 0.12 74.18 9.35

212.57 214.38 0.85 187.31 11.88

n ¼ 2 212.73 213.19 0.22 48.67 77.12

322.45 324.07 0.50 293.59 8.95

819.01 846.58 3.37 725.02 11.48

n ¼ 3 475.05 477.35 0.48 73.29 84.57

719.57 727.55 1.11 656.24 8.80

1768.75 1900.35 7.44 1578.54 10.75

C

D

x

y

40 10 10

30

2.0 cm

F = 0.034 m

I = 5.81146x10 m

I = 1.75303x10 m

I = 1.28016x10 m

I = 7.51444x10 m

K = 4.53333x10 m
x

2

-4 4

-3 4

-4 6

-3 4

-6 4

yy

xx

D

ωω

D

D

= -0.23526 m
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Fig. 3. Cross section layout for Example 1.
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Fig. 4. Cross section layout for Example 2.

Table 2

Natural frequencies (Hz) of beam studied as Example 2

Mode Exact Rotary inertia Error Warping Error

ignored (%) ignored (%)

n ¼ 1 51.05 51.07 0.04 15.91 68.83

101.41 101.61 0.20 100.40 0.99

233.71 236.20 1.06 224.57 3.91

n ¼ 2 197.83 198.19 0.18 31.94 83.86

402.91 406.10 0.79 399.05 0.96

904.15 941.96 4.18 870.88 3.68

n ¼ 3 441.48 443.32 0.42 47.93 89.14

897.74 913.53 1.76 889.22 0.95

1939.99 2118.33 9.19 1874.56 3.32
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Fig. 5. Cross section layout for Example 3.

Table 3

Natural frequencies (Hz) 0f beam studied as Example 3

Mode Exact Rotary inertia Error Warping Error

ignored (%) ignored (%)

n ¼ 1 42.41 42.43 0.05 41.99 0.99

74.91 74.96 0.07 71.78 4.18

99.48 99.59 0.11 95.95 3.55

n ¼ 2 150.87 150.99 0.08 126.13 16.40

227.12 227.53 0.18 206.30 9.17

357.85 360.00 0.60 353.63 1.18

n ¼ 3 304.81 305.27 0.15 199.82 34.44

474.64 476.70 0.43 441.39 7.01

792.13 802.83 1.35 784.81 0.92
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Appendix A

The values that determine geometrical properties of cross-section are given by

Sx ¼
Z Z

F

x dF; Sy ¼
Z Z

F

x dF; SoP
¼

Z Z
F

oP dF;

Ixx ¼
Z Z

F

x2 dF; Iyy ¼
Z Z

F

y2 dF; Ixy ¼
Z Z

F

xy dF;

IxoP
¼

Z Z
F

xoP dF; IyoP
¼

Z Z
F

yoP dF; IoPoP
¼

Z Z
F

o2
P dF;

IP ¼
Z Z

F

½ðx � xPÞ
2 þ ðy � yPÞ

2� dF;

K ¼
1

3

Z
s

t3 ds:

Externally applied loads and moments per unit length of a beam are as follows:

px ¼
Z

s

%px ds; py ¼
Z

s

%py ds; pz ¼
Z

s

%pz;

mx ¼
Z

s

%pzy ds; my ¼ �
Z

s

%pzx ds; mP ¼
Z

s

½ %pyðx � xPÞ � %pxðy � yPÞ� ds;

mo ¼
Z

s
%pzoP ds:
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